TPU processor, 16 channels HD video intelligent analysis, 16 channels of full HD video decoding, 10 channels of full HD video encoding
TPU processor, 32 channels HD video intelligent analysis, 32 channels of full HD video decoding, 12 channels of full HD video encoding
RISC-V + ARM intelligent deep learning processor
Based on the RISC-V core, operating at a frequency of 2GHz, the processor features a single SOC with 64 cores and 64MB shared L3 cache.
SRC1-10 is an excellent performance server cluster based on RISC-V arch. It has both computing and storage capabilities, and the full stack of software and hardware is domestically produced.
The RISC-V Fusion Server, supports dual-processor interconnection and enabled intelligent computing acceleration.
SRB1-20 is an excellent performance storage server based on RISC-V arch. It supports CCIX, 128-core concurrent, multi-disk large-capacity secure storage, and the full stack of software and hardware is domestically produced.
SRA1-20 is an excellent performance computing server based on RISC-V arch. It supports CCIX, 128-core concurrent, both software and hardware are open source and controllable.
SRA3-40 is a RISC-V server for high-performance computing, domestic main processor,excellent performance,fusion of intelligent computing, support powerful codec.
SRB3-40 is a high-performance RISC-V storage server with multiple disk slots and large-capacity secure storage.
Intelligent computing server SGM7-40, adapted to mainstream LLM, a single card can run a 70B large language model
SOM1684, BM1684, 16-Channel HD Video Analysis
Core-1684-JD4,BM1684, 16-Channel HD Video Analysis
SBC-6841,BM1684, 16-Channel HD Video Analysis
iCore-1684XQ,BM1684X,32-Channel HD Video Analysis
Core-1684XJD4,BM1684X,32-Channel HD Video Analysis
Shaolin PI SLKY01,BM1684, 16-Channel HD Video Analysis
QY-AIM16T-M,BM1684, 16-Channel HD Video Analysis
QY-AIM16T-M-G,BM1684, 16-Channel HD Video Analysis
QY-AIM16T-W,BM1684, 16-Channel HD Video Analysis
AIV02T,1684*2,Half-Height Half-Length Accelerator Card
AIO-1684JD4,BM1684, 16-Channel HD Video Analysis
AIO-1684XJD4,BM1684X,32-Channel HD Video Analysis
AIO-1684XQ,BM1684X,32-Channel HD Video Analysis
IVP03X,BM1684X,32-Channel HD Video Analysis
IVP03A,Microserver, passive cooling, 12GB RAM
Coeus-3550T,BM1684, 16-Channel HD Video Analysis
EC-1684JD4,BM1684, 16-Channel HD Video Analysis
CSA1-N8S1684,BM1684*8,1U Cluster Server
DZFT-ZDFX,BM1684X,Electronic Seal Analyzer,ARM+DSP architecture
ZNFX-32,BM1684, 16-Channel HD Video Analysis
ZNFX-8,BM1684X,ARM+DSP architecture,Flameproof and Intrinsic Safety Analysis Device
EC-A1684JD4,Microserver with active cooling, 16GB RAM, 32GB eMMC
EC-A1684JD4 FD,BM1684, 16-Channel HD Video Analysis,6GB of RAM, 32GB eMMC
EC-A1684XJD4 FD,BM1684X,32-Channel HD Video Analysis
ECE-S01, BM1684, 16-Channel HD Video Analysis
IOEHM-AIRC01,BM1684,Microserver Active Cooling,16-Channel HD Video Analysis
IOEHM-VCAE01, BM1684, 16-Channel HD Video Analysis
CSA1-N8S1684X,BM1684*8,1U Cluster Server
QY-S1U-16, BM1684, 1U Server
QY-S1U-192, BM1684*12, 1U Cluster Server
QY-S1X-384, BM1684*12, 1U Cluster Server
Deep learning intelligent analysis helps make city management more efficient and precise
Using deep learning video technology to analyze sources of dust generation and dust events, contributing to ecological environmental protection
Using deep learning intelligent analysis to monitor scenarios such as safety production, urban firefighting, and unexpected incidents for emergency regulation.
Using deep learning technology to detect and analyze individuals, vehicles, and security incidents in grassroots governance
Empowering the problems of traffic congestion, driving safety, vehicle violations, and road pollution control
Utilizing domestically developed computational power to support the structured analysis of massive volumes of videos, catering to practical applications in law enforcement
Build a "smart, collaborative, efficient, innovative" gait recognition big data analysis system centered around data
Effectively resolving incidents of objects thrown from height, achieving real-time monitoring of such incidents, pinpointing the location of the thrown object, triggering alerts, and effectively safeguarding the safety of the public from falling objects
Using edge computing architecture to timely and accurately monitor community emergencies and safety hazards
SOPHGO with SOPHON.TEAM ecosystem partners to build a deep learning supervision solution for smart hospitals, enhancing safety management efficiency in hospitals
SOPHGO with SOPHON.TEAM ecosystem partners to build a smart safe campus solution
Using a combination of cloud-edge deep learning methods to address food safety supervision requirements across multiple restaurant establishments, creating a closed-loop supervision system for government and enterprise-level stakeholders
SOPHON's self-developed computing hardware devices, such as SG6/SE5/SE6, equipped with SOPHON.TEAM video analysis algorithms, are used to make industrial safety production become smarter
Combining deep learning, edge computing and other technologies, it has the ability to intelligently identify people, objects, things and their specific behaviors in the refueling area and unloading area. It also automatically detects and captures illegal incidents at gas stations to facilitate effective traceability afterwards and provide data for safety management.
SOPHGO, in collaboration with SOPHON.TEAM and its ecosystem partners, is focusing on three major scene requirements: "Production Safety Supervision," "Comprehensive Park Management," and "Personnel Safety & Behavioral Standard Supervision." Together, they are developing a comprehensive deep learning scenario solution, integrating "algorithm + computing power + platform."
SOPHGO, cooperates with SOPHON.TEAM ecological partners to build a deep learning monitoring solution for safety risks in chemical industry parks
SOPHGO with SOPHON.TEAM ecosystem partners to build a Smart Computing Center solution, establishing a unified management and scheduling cloud-edge collaborative smart computing center
SOPHGO, in collaboration with SOPHON.TEAM ecosystem, have jointly developed a set of hardware leveraging domestically-produced deep learning computational power products. This is based on an AutoML zero-code automated deep learning training platform, enabling rapid and efficient implementation of deep learning engineering solutions
请下载【初赛全流程代码+赛题数据集+比赛所使用预训练模型】,里面包含初赛和复赛所使用到的预训练模型,初赛和复赛数据集test_hq,初赛全流程代码。【tpu-mlir_v0.8.13-g327ff6dc-20230113.tar.gz】则包含初赛和复赛使用到的环境
复赛数据集包含200张汽车图像(.jpg 文件),每辆车最多有 16 张图像,每张都是从不同角度拍摄的。每辆汽车都有一个唯一的 ID,图像根据id_01.jpg、id_02.jpg … id_16.jpg命名。
example_picture文件夹包含每个图像掩模样例,example_masks.csv文件包含复赛提交样例,分为两列:
1. img表明图片的名称
2. rle_mask为游程长度编码,表明哪部分为车辆哪部分为背景
在输出csv后,需要您直接将example_masks.csv命名test_masks.csv,并且在model下找到后缀为bmodel.compiler_profile_0.txt的文件,并命名为profile.txt,之后提交test_masks.csv与profile.txt。
*注:复赛数据集将会在初赛阶段就提供,但是不开放排行榜,初赛流程打通的同学可以提前准备复赛。
TPU-MLIR学习资料: https://tpumlir.org/index.html
TPU-MLIR开源仓库:https://github.com/sophgo/tpu-mlir
UNet开源模型:https://github.com/milesial/Pytorch-UNet
TPU-MLIR学习视频:https://space.bilibili.com/1829795304/channel/collectiondetail?sid=734875
TPU-MLIR入门手册:https://tpumlir.org/docs/quick_start/index.html
前后处理代码baseline:baseline解读请参考【TPU-MLIR参赛指南v2】
参赛者将前后处理python代码和fp32bmodel模型放到目录后一起压缩为submit.zip文件,之后将zip文件提交到指定邮箱 yi.chu@sophgo.com,提交时邮件名遵循 队伍名称-历史第几次提交-TPU-MLIR比赛,例如“说的都队-第一次提交-TPU-MLIR比赛“。初赛阶段每只队伍每天只能向指定邮箱提交一次代码,如果同一天多次提交,我们将会以当日最后一次提交为准,能够打通流程者即可进入复赛阶段。提交目录格式如下
submit
--tpu_tester.py
--xx.bmodel
*注1:我们将会每周日晚上10.00前在企业微信群公布能够打通流程的队伍的名单,请添加赛事助手,加入企业微信群。
*注2:前后处理代码文件请参考【初赛参赛指南】。
*注3:请不要直接将python文件发到yi.chu@sophgo.com,这样会无法接收,请和bmodel文件一起压缩为zip,之后将zip发送到yi.chu@sophgo.com
参赛者只需要提交通过mlir_tester.py生成的test_masks.csv以及编译过程中生成的后缀为bmodel.compiler_profile_0.txt的文件,其中mlir_tester.py请见【复赛参赛指南】。
请阅读【复赛参赛指南】以了解详细的提交方法。每个参赛团队每天最多提交3次结果文件,如果新提交结果优于之前提交结果,排行榜中的成绩将自动进行更新覆盖
参赛者将主观题文档与答辩PPT打包,以zip文件提交到平台,答辩主观题内容包括以下几点:
1. 描述UNet适配过程
a. 步骤详细
b. 可复现的结果
2. 解决问题的过程
a. 列举在适配过程中遇到的困难,以及解决方法
3. 提出TPU-MLIR可以改进的部分
a. 在使用上可以精简的地方
b. 在功能上可以增强的地方(需具备可行性)
4. 简介对TPU-MLIR工程的看法
a. 对MLIR的看法
b. 对TPU-MLIR在DSA相关编译器的看法
c. 对TPU-MLIR在异构计算编译器方面的看法
5. 提交补丁到tpu-mlir工程(可选,加分项)
a. 文档修正
b. 代码注释
c. 修复bug
复赛测评标准:
1. 通过编译生成的中间文件mlir来推理两百张图片,之后使用dice指标评估模型精度;
2. 通过profile.txt 中的runtime来预估模型推理时间,单位为秒;
3. 最终得分计算公式为: score = dice_score + (0.3 - time_score),结果将会精确到小数点后三位,例如0.728;
4. 要求精度dice不低于0.85,平均推理延时小于0.3s。