TPU processor, 16 channels HD video intelligent analysis, 16 channels of full HD video decoding, 10 channels of full HD video encoding
TPU processor, 32 channels HD video intelligent analysis, 32 channels of full HD video decoding, 12 channels of full HD video encoding
RISC-V + ARM intelligent deep learning processor
Based on the RISC-V core, operating at a frequency of 2GHz, the processor features a single SOC with 64 cores and 64MB shared L3 cache.
SRC1-10 is an excellent performance server cluster based on RISC-V arch. It has both computing and storage capabilities, and the full stack of software and hardware is domestically produced.
The RISC-V Fusion Server, supports dual-processor interconnection and enabled intelligent computing acceleration.
SRB1-20 is an excellent performance storage server based on RISC-V arch. It supports CCIX, 128-core concurrent, multi-disk large-capacity secure storage, and the full stack of software and hardware is domestically produced.
SRA1-20 is an excellent performance computing server based on RISC-V arch. It supports CCIX, 128-core concurrent, both software and hardware are open source and controllable.
SRA3-40 is a RISC-V server for high-performance computing, domestic main processor,excellent performance,fusion of intelligent computing, support powerful codec.
SRB3-40 is a high-performance RISC-V storage server with multiple disk slots and large-capacity secure storage.
Intelligent computing server SGM7-40, adapted to mainstream LLM, a single card can run a 70B large language model
SOM1684, BM1684, 16-Channel HD Video Analysis
Core-1684-JD4,BM1684, 16-Channel HD Video Analysis
SBC-6841,BM1684, 16-Channel HD Video Analysis
iCore-1684XQ,BM1684X,32-Channel HD Video Analysis
Core-1684XJD4,BM1684X,32-Channel HD Video Analysis
Shaolin PI SLKY01,BM1684, 16-Channel HD Video Analysis
QY-AIM16T-M,BM1684, 16-Channel HD Video Analysis
QY-AIM16T-M-G,BM1684, 16-Channel HD Video Analysis
QY-AIM16T-W,BM1684, 16-Channel HD Video Analysis
AIV02T,1684*2,Half-Height Half-Length Accelerator Card
AIO-1684JD4,BM1684, 16-Channel HD Video Analysis
AIO-1684XJD4,BM1684X,32-Channel HD Video Analysis
AIO-1684XQ,BM1684X,32-Channel HD Video Analysis
IVP03X,BM1684X,32-Channel HD Video Analysis
IVP03A,Microserver, passive cooling, 12GB RAM
Coeus-3550T,BM1684, 16-Channel HD Video Analysis
EC-1684JD4,BM1684, 16-Channel HD Video Analysis
CSA1-N8S1684,BM1684*8,1U Cluster Server
DZFT-ZDFX,BM1684X,Electronic Seal Analyzer,ARM+DSP architecture
ZNFX-32,BM1684, 16-Channel HD Video Analysis
ZNFX-8,BM1684X,ARM+DSP architecture,Flameproof and Intrinsic Safety Analysis Device
EC-A1684JD4,Microserver with active cooling, 16GB RAM, 32GB eMMC
EC-A1684JD4 FD,BM1684, 16-Channel HD Video Analysis,6GB of RAM, 32GB eMMC
EC-A1684XJD4 FD,BM1684X,32-Channel HD Video Analysis
ECE-S01, BM1684, 16-Channel HD Video Analysis
IOEHM-AIRC01,BM1684,Microserver Active Cooling,16-Channel HD Video Analysis
IOEHM-VCAE01, BM1684, 16-Channel HD Video Analysis
CSA1-N8S1684X,BM1684*8,1U Cluster Server
QY-S1U-16, BM1684, 1U Server
QY-S1U-192, BM1684*12, 1U Cluster Server
QY-S1X-384, BM1684*12, 1U Cluster Server
Deep learning intelligent analysis helps make city management more efficient and precise
Using deep learning video technology to analyze sources of dust generation and dust events, contributing to ecological environmental protection
Using deep learning intelligent analysis to monitor scenarios such as safety production, urban firefighting, and unexpected incidents for emergency regulation.
Using deep learning technology to detect and analyze individuals, vehicles, and security incidents in grassroots governance
Empowering the problems of traffic congestion, driving safety, vehicle violations, and road pollution control
Utilizing domestically developed computational power to support the structured analysis of massive volumes of videos, catering to practical applications in law enforcement
Build a "smart, collaborative, efficient, innovative" gait recognition big data analysis system centered around data
Effectively resolving incidents of objects thrown from height, achieving real-time monitoring of such incidents, pinpointing the location of the thrown object, triggering alerts, and effectively safeguarding the safety of the public from falling objects
Using edge computing architecture to timely and accurately monitor community emergencies and safety hazards
SOPHGO with SOPHON.TEAM ecosystem partners to build a deep learning supervision solution for smart hospitals, enhancing safety management efficiency in hospitals
SOPHGO with SOPHON.TEAM ecosystem partners to build a smart safe campus solution
Using a combination of cloud-edge deep learning methods to address food safety supervision requirements across multiple restaurant establishments, creating a closed-loop supervision system for government and enterprise-level stakeholders
SOPHON's self-developed computing hardware devices, such as SG6/SE5/SE6, equipped with SOPHON.TEAM video analysis algorithms, are used to make industrial safety production become smarter
Combining deep learning, edge computing and other technologies, it has the ability to intelligently identify people, objects, things and their specific behaviors in the refueling area and unloading area. It also automatically detects and captures illegal incidents at gas stations to facilitate effective traceability afterwards and provide data for safety management.
SOPHGO, in collaboration with SOPHON.TEAM and its ecosystem partners, is focusing on three major scene requirements: "Production Safety Supervision," "Comprehensive Park Management," and "Personnel Safety & Behavioral Standard Supervision." Together, they are developing a comprehensive deep learning scenario solution, integrating "algorithm + computing power + platform."
SOPHGO, cooperates with SOPHON.TEAM ecological partners to build a deep learning monitoring solution for safety risks in chemical industry parks
SOPHGO with SOPHON.TEAM ecosystem partners to build a Smart Computing Center solution, establishing a unified management and scheduling cloud-edge collaborative smart computing center
SOPHGO, in collaboration with SOPHON.TEAM ecosystem, have jointly developed a set of hardware leveraging domestically-produced deep learning computational power products. This is based on an AutoML zero-code automated deep learning training platform, enabling rapid and efficient implementation of deep learning engineering solutions
本次赛题提供的数据集包含image和label两个文件夹。image文件夹由2885张训练集和133张测试集组成;label文件夹中包含2885个带有对应每张图片全部标签的txt文件。标签共包括三种类别:机动车、行人和非机动车。数据标签格式如下:
<class_id> <ct_x> <ct_y> <w> <h>
标签对应id:0:car, 1:person, 2:bike
E.g.
0 0.4284 0.6977 0.2984 0.5361
1 0.2784 0.6125 0.0380 0.0361
2 0.6706 0.7072 0.0255 0.0645
参赛者在训练完成并对测试集图片进行推理后,将测试集图片的检测结果以与训练集标签同名的txt文件保存,并上传至result_submit/文件夹下,具体保存方式见result_submit/README.md。上传格式实例如下所示:
<class_name> <confidence> <left> <top> <right> <bottom>
E.g.
car 0.399786 3 642 125 690
person 0.395193 1549 621 1686 796
bike 0.386811 373 647 395 701
P.S. 我们在scripts/文件夹中为选手提供脚本,可将<class_id> <confidence> <ct_x> <ct_y> <w> <h>
格式转换为提交所需的 <class_name> <confidence> <left> <top> <right> <bottom>
格式。
将检测结果保存至input/detection-results
将测试图片保存至images/
运行如下指令
python3 convert_gt_yolo.py
选手提交成绩后,若审核无误将会每日于result_submit/readme.md中更新分数,每周于赛事官网页面更新分数
通过mAP(mean Average Precison)指标评测模型精度。mAP即各类别APIoU=0.5的平均值,其中APIoU=0.5为IoU阈值为0.5 的平均精度。初赛最终得分计算公式为:score=mAP*100,分数高者为优。
1. 通过与初赛相同的mAP(mean Average Precison)指标评测模型精度。
2. 通过模型推理时间i_time评测模型性能,i_time为测试集图片推理的平均时间,单位为ms。
3. 最终得分计算公式为:score=mAP*100+(1000-i_time)*0.1,分数高者为优。